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Abstract—We study forecasting hurricane (tropical cyclone)
trajectories using deep learning techniques. Hurricane trajecto-
ries exhibit highly complex and nonlinear behavior. Numerous
factors such as landscape, atmoshperic effects cause tropical
cyclones to follow devious or unwavering routes. We employ a re-
current neural network (RNN)-based deep learning architecture
called TrajGRU [1] to capture these complex temporal patterns
and perform forecasts. We analyze the performance in terms of
kilometers at various hourly resolutions and compare the results
with two baseline methods including naive linear predictor and
long short-term memory (LSTM) networks [2]. We demonstrate
the performance gains and analyze the predictions.

I. INTRODUCTION
A. Preliminaries

A cyclone, hurricane or typhoon is the system of storms
which rotate around a low-pressure center with high speeds.
Forecasting the trajectory and intensity of hurricanes is crucial
to take precautions for the protection of people and property.
Since the dynamics of the system is highly complex, nonlinear,
and dependent on numerous external factors, conventional
methods which mostly rely on statistical forecasting tools
perform poorly. Moreover, they can’t properly utilize the
significant amount of past trajectory data which grows continu-
ously. In this study, we solve this tracking problem using deep
learning techniques considering its advantages in complex
system modeling and making use of big data.

Neural network-based methods are becoming widely pre-
ferred for the time series prediction task thanks to their ability
to approximate highly nonlinear and complex functions [3].
To capture the temporal relations in time-series data properly,
recurrent neural networks (RNNs) are used in sequential tasks
thanks to their ability to exploit temporal behavior. RNNs
contain a temporal memory called hidden state to store the
past information, which helps them to model time-series more
successfully in several different sequential learning tasks [4],
[5], [6]. Hence, we consider RNN-based networks to perform
time-series prediction.

There are several forms of recurrent neural networks such
as gated recurrent units (GRU) and long short-term memory
(LSTM) networks in the literature. In addition their spatial
extensions such as ConvLSTM [7] are also widely preferred
in spatiotemporal prediction tasks. In this study, we use
TrajGRU [1] model with several modifications to adjust to
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this problem. This model was initially proposed for the pre-
cipitation prediction tasks, and has shown success thanks to
its warping operation, which captures weather events naturally.
In this project, we employ TrajGRU for hurricane trajectory
prediction task.

B. Related Work

Recently, several deep learning based approaches has been
proposed to track cyclone trajectories. [8] clusters the hurri-
canes using DTW distance, and employ sparse Recurrent Neu-
ral Network (sparse-RNN) architecture, in which the weight
connections are optimized using a Genetic Algorithm (GA).
In [9], a Convolutional Neural Network (CNN) combined
with Long-Short Term Memory (LSTM) units is proposed to
predict the coordinates of the hurricane center using weather
satellite images. Another simple approach proposes to divide
the spatial region into cells, and feeding corresponding spatial
and temporal features into an LSTM to predict the next
cell position of the hurricane center [2]. In [10], fusing past
trajectory data and atmosphere images centered at hurricane
centers to predict the displacement vector is proposed. A recent
study proposed a methodology to predict map of probabilities
of being a center of hurricane or not, using two Convolutional
LSTM (ConvLSTM) networks one for tracking and other
for predicting [11]. All studies has shown applicable results,
however their results are presented in different datasets with
different measures at different temporal resolutions.

Some studies [11] approaches this problem as a pixel
classification task, and tries to predict whether a hurricane
center will exist at a pixel or not. We approach this task as
a linear regression problem, and penalize bigger prediction
errors heavily with mean squared error loss in terms of de-
grees. Although the previous studies also employ deep learning
models including recurrent neural network and CNN-based
models, our model enables to capture the warping structure of
hurricanes. GRU is also an efficient model, which prevents
the gradient problems related to simple RNN and has the
gating feature of LSTMs, but with less complexity. We also
utilize a early fusion module (a multi-layer perceptron that
embeds external features into input images) that incorporates
side information into our predictions.

Although the previous studies has worked on different
spatial or temporal subsections of the hurricane dataset, we



particularly focus on the years between 1994 and 2020. We
consider the North Atlantic basin since the hurricane density
is comparably high and economic effects are significantly
greater compared to other basins. During evaluation, we do
not present the results in terms of degrees due to the fact that
each latitutdal/longitudal degree represents a different spatial
distance in terms of kilometers. We instead consider the errors
in terms of kilometers while comparing different models. This
provides a more practical and interpretable approach while
eavluating different methods.

C. Contributions

Our contributions are as follows:

o As the first time in the literature, we employ TrajGRU [1]
model for hurricane trajectory forecasting. This model
uses atmospheric feature images at different pressure
levels and handles both spatial and temporal complexity
of the hurricane phenomena.

e« We also utilize a early fusion module to incorporate
external features including distane to land, storm speed,
storm direction, sustained wind speed and center pressure
into our architecture.

e We compare the performance of our model with two
other methods, naive linear predictor and LSTM [2], and
demonstrate the gains in terms of prediction error in
kilometers.

D. Organization

The organization of this paper is as follows. In Section II,
we define the problem of forecasting hurricane trajectories
and provide the mathematical notation. Then, we describe and
give the details of the implemented model in Section III. We
provide the dataset and baseline method details in Section
IV-A and IV-B, respectively. We present the experiment results
and compare our architecture with other methods in Section
IV-D. Finally, we conclude the paper with several remarks in
V.

II. PROBLEM DEFINITION

We study the problem of hurricane trajectory forecast-
ing. Our dataset consists of a set of weather images, one-
dimensional external features and hurricane trajectories. Hur-
ricane trajectories are represented as {Y,}N_;, where N is
the number of hurricanes, and Y,, € RT*2 is the matrix
of hurricane center locations (latitude and longitudes) for the
n th hurricane with 7' timesteps. Here, each row captures
a 3-hour-long timeframe. We denote the weather images
corresponding to these hurricanes with {X,,}N_,, where X,, €
RT*3%25x25%5 ig the matrix of weather images that consists
of athmospheric features measured at three different pressure
levels. External features, which we call side information, is
denoted as {S,})_;, where S,, € RT*5. Here, each row
representes five features of that timeframe (distance to land,
storm speed, storm direction, sustained wind speed and center
pressure).

Our goal is to design and train a deep learning model,
which can be denoted as a complex nonlinear function (f),
which takes the past information for a hurricane and forecasts
hurricane center locations along the future. We can express
the system as follows:

gn,t+1 = f(Xn,:t; Sn,:ts 0)7 (1)

where §,, ,; is the hurricane center location prediction for the
t+1 th timestep of the nth hurricane, and X, .; and s,, .; are
the weather image tensor and side information vectors until
the ¢ th timestep (including). Here, € the model weights. We
achieve our goal through minimizing the mean squared error
loss between g, , 1, and y,, ;. over the training set.

III. MODEL DESCRIPTION

Our model has an encoder-decoder structure with an input
and output block. The architecture of the model is shown in
Figure 1. In the following sections, we describe the operations
performed in each block.

A. Input Block

There are two sources of information that we use in this
project. The first source is coming from weather images
cropped by centering the hurricanes: X; € RTXLXMXNxD,
where ¢ is the timestep that is t — W;,, <t <t+1 and W, is
the input window length. We collected D different atmospheric
features from L different atmospheric pressure levels for T’
time steps with spatial resolution of M x N. Since we use 2-
D convolutional operations in our model structure, input data
is flatten at level dimension to create X; € RTXMXNxDxL
Second source is the; vectoral source that belongs to input
hurricane s, € RT”*P where D’ shows the feature dimension.
We use this information by passing through a multi-layer-
perceptron and broadcasting to form S, € RTXMxNxD
Finally these two source of information are concateneted to
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create input X, € RT*MxNxDxL+D

B. Encoder Decoder Block

The encoder-decoder structure allows us to take a sequence
of inputs and produce a sequence of outputs. Recurrent units
are used as building blocks in this structure which trans-
fers information between timesteps. The main goal of the
encoder is to code input sequence to a contex vector and
decode the representation into target sequence. For example,
x = (21,2, - ,x7) is a input sequence where x € R7, the
encoder block learns mapping of

h; = f(x,h; 1)

where h; € R™ is the hidden state of the encoder at time ¢, and
m is the size of hidden state. f represents a non-linear function
such as RNN[12], LSTM [13], GRU [14], ConvLSTM[11] or
TrajGRU [1] as we use in this paper.

In our problem input sequence is an spatio-temporal se-
quence. Thus we implemented a model which learns both spa-
tial and temporal correlations. As it is shown in Figure 1a, the
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(a) Graph of the encoder-decoder block. The input data comes as a
sequence and output is predicted as a sequence. Operations for the
two timesteps are shown. The states of the recurrent units are carried
between the encoder and the decoder blocks. We use convolution
and maxpooling operations for the downsampling operation, and
transposed convolution is used for the upsampling operation.
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(b) Graph of the input block showing the side information ente-
gration to the input module. The side information s;—; is fed into
an multi layer perceptron. Then, the output vector is broadcasted by
repeating along the selected axis. Finally, the broadcasted embedded
side information is concataneted with the weather data
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(c) Graph of the final block showing the distance vector prediction.
The decoder outputs a 2-D tensor. Then tensor is flattened and
passed through a multi layer perceptron to predict a two dimensional
vector, d:41 which is the prediction for the next location of hurricane
center.

Fig. 1: Visualisation of the model architecture and operation
steps. Data first passes to 1b, then la and finally 1c

encoder takes an input sequence, X = (X'1,X’y, -+, X'r)
and learns mapping of

H; = f(Xt, Htfl)

where H, is the coded input representation whe f represents
the TrajGRU and downsample operations. Then representation
passes to the decoder block. In this block, representation

is decoded to output tensor Y/, ; with TrajGRU units and
upsampling operations.

TrajGRU learns location-variant filters between input
frames. With this implementation, TrajGRU can learn the
motion patterns between time steps. At each time step, Traj-
GRU takes current input and previous state to generate local
neighborhood set for each location at each timestep. The main
formulas of TrajGRU are given as follows [1]:

U, Ve = ’Y(Xt77'lt—1)7

L
Zy=0(Wae+ X+ Y Wi warp(Ho—1,Us i, Via)),
=1

L
Rt = O'(W;mn * Xt + Z W;”n * Warp(Ht—laut,h Vt,l))a
=1

L
Hy = fWan * X+ R0 (> Wiy, x warp(Hy—1,Ur1, Ver))),
1=1

Hi=(1—Z)oH, + Z0Hi 1.
2
Here, L is the total number of allowed links. U, V, €
REXHXW are the flow fields that store the local connec-
tion structure generated by the structure generating network
v. The Wi _,W! W!, are the weights for projecting the
channels, which are implemented by 1 x 1 convolutions. The
warp(H:—1,Us 1, Vi) function selects the positions pointed
out by U ;,V,; from H,_; via the bilinear sampling kernel.

C. Output Block

In this block we predict next location of the hurricane center
for each frame. The decoder outputs Y{ ;. Then this tensor
is flatten and passed through multi-layer-perceptron for each
time step. Finally, the distance vector flt+1 is predicted where
d = (Giatitude, Otongitude) for each frame.

IV. EXPERIMENTS
A. Datasets

We use IBTrACS Dataset for hurricane trajectories [15].
This dataset contains the hurricane trajectory data since 1842
from multiple meteorology agencies. Every hurricane trajec-
tory has 3-hourly center coordinates, with additional features
such as land distance, hurricane type and wind speed. The
dataset contains more than 13000 hurricane tracks. The dataset
includes samples from different basins, e.g North Atlantic
(NA), Eastern North Pacific (EP). Since hurricanes show dif-
ferent characteristics based on different basins, only hurricanes
occurred in North Atlantic basin are selected. In addition, NA
contains less interpolated features, more samples and is known
as the benchmark region. Data includes latitude, longitude,
distance to land, maximum sustained wind speed, minimum
sea level pressure, storm speed and storm direction features for
every 3 hours of hurricane. Data is truncated to years between
1994 and 2020 because of the gaps in selected features.
Between selected years there are 426 hurricanes recorded. This
is a reasonable number of hurricanes considering other works



[8] [9] [10]. This dataset was directly used by the baseline
method.

For weather images, we have collected reanalysis weather
data for different pressure levels from ERA Interim Dataset
[16]. This dataset provides atmospheric feature images be-
tween 1979 and 2020. We cropped 25x25 km images for each
timestep such that the hurricanes are centered. We have used
5 different features (divergence, geopotential, u-component of
wind, v-component of wind, fraction of cloud cover) from 3
different pressure levels (300, 500 and 1000 hPa), in total 15
features.

In Figure 2, we illustrate some samples of hurricane tra-
jectories. We also visualize some unique hurricane trajectories
with their measured storm directions in Figure 3. As shown,
they can exhibit quite nonlinear and complex patterns.

Fig. 2: Samples of hurricane trajectories. Some samples have
very nonlinear and complex trajectories.
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Fig. 3: Samples of hurricane trajectories and directions.

We have also performed exploratory data analysis on hur-
ricane data. In Figure 4 and 5, we provide the histogram of
hurricane with respect to various features.

B. Baseline Methods

In addition to our model, we also evaluate two other meth-
ods to compare with the performance of our architecture. To
this end, we have implement the following baseline methods.
The first method is a simple baseline method which adds up the
last displacement vector into current location, and the second
method is a deep learning-based approach proposed in a recent
work [2].

Histogram of pressure Histogram of maximum sustained wind speeds
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Fig. 4: Histogram of hurricanes with respect to pressure and
wind speed

Histogram of maximum hurricane speeds Histogram of hurricane durations

Fig. 5: Histogram of hurricanes with respect to hurricane speed
and duration

1) Naive Linear Predictor: The equation that represents the
naive linear predictor is below:

Ty =1 + Az 3)

Az =21 — Ty—2 4

This predictor adds up the latest displacement vector into
current location to predict the next lcoation of the hurricane
center. We can also make multi-step predictions by using
predictions recurrently as if they are real location values.

2) Long Short-Term Memory (LSTM) Networks: This
methodology divides the spatial map of North Atlantic region
into a 1x1 degree resolution grid. Then, a multi-layer LSTM
network is used to predict the next location of hurricane center
on this grid. Model takes a sequence of inputs and predicts
the sequence of hurricane location in grid index [2]. This
model employs a multi-layer LSTM-based architecture. In
addition, next latitude, longitude values of center is predicted
by suffering the Mean Square Error (MSE) loss. Figure 6
shows the architecture of this model. In our implementation
for the baseline, we were able to reproduce the results claimed
in the paper with almost same hyperparameters as described
in the paper [2].

C. Implementation Details

Since input features and target values have variety of units
we apply normalization. Input and outputs are min-max scaled.
We train our model as stateful model, which means states are
carried between batches. This way we preserve the information
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Fig. 6: LSTM network for hurricane trajectory forecasting,
proposed in [2]

pass between each time step. However to prevent vanishing
gradient problem caused by back propagation through time,
we detach states at the begining of each loop. We tuned the
hyperparameters with grid search. We took 10 time step length
of input and tried to predict next center location of these
frames. We split the hurricane data into three sets; test, train
and validation and during training we monitor our training and
validation error. After five consecutive increase in validation
error, we stop the training and took model belonging to five
step before as our the best model. Final model is evaluated at
the test set and results are recorded.

D. Results

We obtain prediction errors in terms of kilometers for four
different forecasting durations, 3, 6, 12 and 24 hours. The
results are summarized in the following table:

TABLE I: Forecasting errors for 3, 6, 12 and 24 hours for all
methods in terms of kilometers. Experiments are repeated 5
times for LSTM and TrajGRU. We report the average errors.

Forecasting Duration

Method 3 [ oh [ 12h | 24h

Naive Linear Predictor | 21.3 | 67.8 | 201.3 | 472.1
LSTM 27.8 | 835 | 1233 | 208.6
TrajGRU 294 | 66.6 | 112.9 | 189.0

Except the 3-hour case, TrajGRU performs better that other
models. When the forecasting duration increases, the perfor-
mance improvement becomes more significant. The encoder-
decoder structure provides higher accuracy for multi-step long
duration predictions. Considering the fact that forecasting
hurricanes more earlier is more crucial and useful, our model is
more practical even though 3-hour error is higher. Naive linear
predictor performs best in 3-hour predictions but it is not really
useful since it is not usually possible to take precautions in
three hours.

V. CONCLUSION

In this project, we apply deep learning techniques for hurri-
cane trajectory forecasting. We have modified the TrajGRU
model proposed in [1] for precipitation forecasting to this
problem. Our architecture takes atmospheric at images at 3-
hours resolution as inputs and predicts the location of the
hurricane center for the next timesteps. We also use an early
side information fusion module to utilize external features
including storm speed, direction, distance to land etc. We
demonstrate the gains in prediction performance in terms of
kilometers and compare our results with naive linear predictor
and LSTM networks.
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